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We study the work fluctuations of two types of finite quantum spin chains under the application of a
time-dependent magnetic field in the context of the fluctuation relation and Jarzynski equality. The two types
of quantum chains correspond to the integrable Ising quantum chain and the nonintegrable XX quantum chain
in a longitudinal magnetic field. For several magnetic field protocols, the quantum Crooks and Jarzynski
relations are numerically tested and fulfilled. As a more interesting situation, we consider the forcing regime
where a periodic magnetic field is applied. In the Ising case we give an exact solution in terms of double-
confluent Heun functions. We show that the fluctuations of the work performed by the external periodic drift
are maximum at a frequency proportional to the amplitude of the field. In the nonintegrable case, we show that
depending on the field frequency a sharp transition is observed between a Poisson-limit work distribution at

high frequencies toward a normal work distribution at low frequencies.
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I. INTRODUCTION

The study of fluctuations in nonequilibrium small systems
has become an active field of research during the last years.
The reasons are twofold: on the one hand, nanoscaled sys-
tems are nowadays quite easily manufactured, opening the
door to the emergence of various nanotechnologies. On the
other hand, in the field of nonequilibrium statistical mechan-
ics, where exact results are very few, the discovery of fluc-
tuation symmetries [1,2] expressed by the Gallavotti-Cohen
fluctuation theorem [3-8] and Jarzynski equality [9] have
opened new theoretical perspectives. The fluctuation theorem
is a statement on the time-reversal symmetry of the fluctua-
tions of the entropy production along a nonequilibrium path
[4]. Whereas this theorem is an asymptotic statement, Crooks
derived an interesting identity reading [10,11]
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AS is the entropy production for a system driven during a
time 7 within a forward protocol \z(f), P is the distribution
of entropy production in the forward process, and Py is the
distribution associated with the backward process—that is,
when the system is driven in a time-reversed manner. The
celebrated Jarzynski equality [9] is easily derived from the
Crooks relation. Indeed, utilizing for a thermalized system
AS=B(W-AF), with AF=[F(\(7))—F(\(0))], and integrat-
ing over W we have

(ePV)y=e P, 2)

which is the Jarzynski relation. These relations, initially de-
rived for classical systems, have been extended to the quan-
tal world as well [12—17] within various setup and prescrip-
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tions for the actual measurement of work performed on a
quantum system [18].

As is clear from the extensivity of the entropy production,
the probability to observe a decrease of entropy in a given
nonequilibrium trajectory is exponentially small for a mac-
roscopic system. However, for microscopic or mesoscopic
systems these untypical trajectories arise with a significant
probability and consequently can be observed and measured
in actual experimental setups. One may mention in particular
experimental tests on the stretching of RNA molecules
[19,20] and experiments on torsional pendulums [21], on
colloidal particles [22,23], and on photochromic defect cen-
ters in diamonds [24]. See Ref. [25] for an excellent review
of the experimentally related investigations. It is then inter-
esting to calculate or predict the shape of these fluctuations
in some explicit models for small system size [26,27]. In this
contribution we focus our attention on the work fluctuations
of two time-dependent quantum spin chains where the time
dependence is due to an externally applied magnetic field.
The two models considered are the integrable quantum Ising
chain in a time-dependent transverse field and the XX quan-
tum chain with a longitudinal magnetic field that breaks its
integrability. We consider these two cases as archetypical of
the integrable and nonintegrable situations, and we expect
that the work distributions will reflect somehow these differ-
ences. We check the Jarzynski and Crooks relations and
compute explicitly the nonequilibrium work distributions as-
sociated with several magnetic field protocols. In particular,
we study the limiting steady distributions in the important
case of periodically driven systems.

The paper is organized as follows: in the next section we
define the models and protocols for studying work fluctua-
tions. We insist in particular on the definition of work we are
using in our study, pointing explicitly, as was done in
[18,28], to the discrepancies between this definition and the
use of a work operator. We present then the numerical results
corroborating the Jarzynski and Crooks relations before turn-
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ing to the main part, which is the study of work fluctuations
within a periodic drift. An exact solution, in terms of double-
confluent Heun functions, is given in the Ising case. The
study of the XX chain is only numerical, but nevertheless
evidence is given to show clearly the appearance of a sharp
transition between an exponential work distribution at high
field frequencies toward a Gaussian work distribution at
lower frequencies. We summarize and discuss our results in
the last section.

II. QUANTUM SPIN CHAINS IN A TIME-DEPENDENT
FIELD

A. Definition of the model and protocol

We study quantum chains with a time-dependent field in
the context of fluctuations of the work performed on them by
the time-dependent force, defined through the Hamiltonian
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in particular in the two cases A=0 and A=1. The ¢’s are
Pauli’s matrices, and h(z) is a time-dependent magnetic field
applied in the z direction and leading to the Zeeman term
—h(f)M* where M* is the total z component of the magneti-
zation.

At A=0, it corresponds to the Ising quantum chain. In a
static transverse field the Ising chain can be mapped after a
Jordan-Wigner transformation onto a fermionic problem
which can be diagonalized after a suitable canonical (Bogo-
liubov) transformation. In the thermodynamic limit N— oo,
this model presents a quantum phase transition at h=h,.=1
which is in the two-dimensional classical Ising model uni-
versality class. The integrability and nontriviality (in the
sense of physical properties) of the model is at the origin of
its wide use in many fundamental studies concerning in par-
ticular the testing grounds of nonequilibrium quantum statis-
tical mechanics. One may mention, for example, relaxation
properties from an inhomogeneous initial state [29-34], en-
tropy production after a local quench [35,36], entropy pro-
duction in the unique nonequilibrium steady state generated
from a two-temperature initial state [37], or even relaxation
properties after a quench through the critical point (basically
h is varied from h;>h, to hy<<h.) [38,39].

The case A=1 corresponds to the isotropic XX quantum
chain in a time-dependent magnetic field, which breaks the
integrability of the model. With a periodic dependence of the
field, this model has to be compared to the quantum-kicked
Heisenberg chain

=
H() =33 (0}, + 7ot + S0Volaly), ()
j=
where the time-dependent perturbation is periodically
switched on. This model was studied in the context of the
transition from integrability to ergodicity in the thermody-
namic limit [40-42]. Here instead of the two-body interac-
tion (in the fermionic picture) ooy, ,, we apply a magnetic
field in the z direction, which leads to a many-body fermi-

onic term.

PHYSICAL REVIEW E 77, 051120 (2008)

In the following, we consider the distribution of the work
performed by the time-dependent field A(r) from the initial
time f; to the final time 7. The varying field will lead to
transitions between the initial state of the system to a new
state at the final time. Here we use as a definition for the
work the difference of energies in the final state and initial
state, W;;=AE,;;=E,~E;, which assumes that we have mea-
surements performed at ¢; and ;. The work distribution P(W)
is a weighted sum over all initial and final states of the quan-
tum transition probability |(¢;, U¢,)|%, where U is the unitary
time-evolution operator associated with the time-dependent
Hamiltonian H(z) and is given by

P(W) =2, SAE;— W)|(¢1,Ug)Pw?, ()
if

where ¢; and ¢, are, respectively, the initial and final eigen-
states of the initial and final Hamiltonian and w®
=(¢h;, pop;) where pyxe PO is the initial (which is sup-
posed to be canonical here) density matrix. It is clear that
this definition differs from the introduction of a work opera-
tor defined such that its expectation in the state p would give
the actual performed work:

te d
W=ffds Tr{p(s)di;l}, (6)

which can be shown to be given by

W ="Tr{p(t;) 6H} = Tr{p(t)[U*(t;,1) H(t ) U(t.1;) = H(1;) ]}
(7)

after a short algebra. One is then tempted to define as a work
operator 8H =ITI(tf)—H(t,~), with A the Heisenberg picture of
A. However, it is clear that in general the moments ((SH)")
would differ from the moments (W")=[dW W"P(W) with
P(W) defined in (5), and consequently the expectation of the
operator e PO )

(7P = Te{p(r)e P71}, ®)
will not necessarily give the Jarzynski result e #2F. Never-
theless, one can show that the moments so defined will differ
only for n>2, so that for the average and average square
work one can use the work operator 6H since then

(SH) = Tr{p(t;) SH} = f dW WP(W),

((8H)*y =Tr{p(1,)(5H)*} = f dW W*P(W), )

with P(W)=Z2, ;6 (AE;;—W)| (¢7, Udp)[*w®. The equality of
the first moments is trivial. To prove the equality for the
second moments, one may notices that for [p(z;),H(z;)]=0
using the cyclicality property of the trace one has
Tr{p(ti)[ljl(tf),H(ti)]}=0, which then leads trivially to the
equality of the second moments:
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f dW W*P(W) = Ei,f (Ep=E)*|(p U)o

= Tr{p(ti)[ﬁ(l‘f) - H(ti)]z}
— Tr{p(t)[H(1),H(1)]}

=Tr{p(t)[H(t;) - H(t)*}.
In short, the second moments agree whatever the commuta-

tor [Ijl(tf) ,H(1;)] is. At the level of the third moments, n=3,
one may show that a  nonvanishing term
Tr{p(ti)[ﬁ(tf),H(zi)]ﬁ(tf)} comes into play, leading to a dif-
ference between the moments associated with the two pre-
ceding definitions of the work.

In order to compute the work distribution one needs to
know the unitary time-evolution operator U for the given
field protocol, which is a difficult task in general. The nu-
merical study assumes that the true dynamics is well ap-
proximated by the steplike unitary evolution

M-1
U(t,tO) = H U(tn-f-latn)? (10)
n=0
with
Ultyst, ) = €002, (11)

where At is an elementary time increment, meaning that the
real function h(r) is approximated by a step function. The
true dynamics is obtained by taking the limit Ar—0 and M
— o0, In the present study we use typically values of At¢ of
order 1072 (time is measured in units where =1 and the
spin-spin coupling J* in the x direction of the spin chains is
set to 1). The transition  probabilities  w; .,
=|(¢;, U(t.1,), y)|%, where ¢; () are eigenstates of the ini-
tial (final) Hamiltonian, are computed numerically using (10)
and (11) on small chains of typically less than ten spins and
with open boundary conditions.

B. Jarzynski and Crooks relations

In order to test our numerical procedure we compare first
the free energy differences obtained from the Jarzynski
equality (2) in a linearly varying field protocol with the equi-
librium free energy differences calculated directly from the
partition function

F(h() =- éln Tr{e PHO} (12)

In Fig. 1 we plot the free energy differences obtained from
the Jarzynski equality and from a direct equilibrium calcula-
tion as a function of the final field value & at inverse tem-
perature B=1. The agreement is excellent with a relative
deviation which is less than 1075

We have also considered the ratio Pp(W)/Pgz(-W)
=P(W)/P(-W) for the symmetric protocol h(z)
=hg sin(7rt/ 7) for r€[0,7]. In Fig. 2 we see explicitly the
exponential dependence eV for hy=1/2 and 2 for a chain of
size N=8. Again, the agreement of the numerics with the
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FIG. 1. Free energy difference obtained from the Jarzynski
equality compared to the exact value for the Ising chain with N
=7 as a function of the terminal field value at 8=1 and h(¢)=t.

analytical Crooks and Jarzynski relations is fulfilled with a
relative deviation which is less than 107%. We have tested
also the Crooks relation in the nonsymmetrical protocol
whose results are presented in Fig. 3. Again, the exponential
dependence eV is clearly seen in the graph.

C. Stationary distributions in the driven regime
1. Ising quantum chain

a. Numerical study. We consider now the case where the
system is forced with a periodic external field with period 7,
maximum value 4y, and minimum value 0. We are interested
in the limiting stationary work distribution (if any) obtained
after many periods of the external driving field.

Before going onto the driven situation, we concentrate on
the fluctuations of the work after one period. In Fig. 4 we
show the distributions obtained on the Ising chain with N
=7 spins for hy=1/2 and for different periods 7 of the forc-
ing field for an initial infinite temperature state =0 (equid-
istribution of the initial eigenstates). In that case, obviously,

10*

P(W)/P(-W)

FIG. 2. Crooks fluctuation ratio in the symmetrical case for the
XX chain at A=1 with N=8 at =1 and 7=1.
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FIG. 3. Crooks fluctuation ratio in the asymmetrical case for the
XX chain at A=1 with N=8 at B=1.

the average work is vanishing, which is reflected in the sym-
metry of the work distribution P(W)=P(-W). In Fig. 4 we
see clearly that the evolution of the distribution is not mono-
tonic with forcing period 7. The width of the distribution first
increases with 7, reaching a maximum, and then decreases
with 7. This behavior is clearly seen in the second moment
(W?) in Fig. 5 where we show the variance <W2>3=0 as a
function of 7 for different maximum field values &, for an
N=7 spin chain. We see that the width of the distribution
increases with the amplitude of the perturbation, since then
the time-dependent perturbation is more effectively coupled
with the spin chain. Moreover, the period 7,,, associated
with the maximum width decreases as the amplitude is in-
creased with, as seen from the numerics, a law 7, ~ 1/h for
large fields enough (iy>1). Moreover we have seen numeri-
cally that 7, is almost independent of the system size. As
the field is increased, the maximum value of the variance
reaches an asymptotic finite value which is linearly depend-
ing on the size N of the chain. One has from the numerics
<W2>B:0,max= (N_ 1)/2

We have also computed the first and second moments of
the distribution as a function of 7 for different inverse tem-

10
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FIG. 4. (Color online) Work probability distribution for the Ising
model at with N=7 spins at S8=0 for hy=1/2.
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FIG. 5. (Color online) (W?) for the Ising model with N=7 spins
at =0 as a function of the period 7.

peratures (. The initial-state temperature acts as a scale fac-
tor for the moments

(W)= tanh(B/2)(SW), (13)

where (SW), defined by this equation, is the temperature-
independent part of the average work. As seen in Fig. 6 one
has for the variance

(W2 5= (W5 = (W2, (14)

meaning that the width of the distribution has a very small
dependence on the initial-state temperature, at least in the
considered range of S.

We turn now to the driven situation with many periods. In
Fig. 7 we present the time evolution of the average work for
different periods 7 at a field value hy=1/2 and inverse tem-
perature B=1. As expected, for large periods the system fol-
lows almost adiabatically the variation of the associated
equilibrium free energy (the reversible work). Moreover, it is
seen as expected from the second principle that the actual
average work is always greater than the free energy differ-
ence (see the inset). As the period of the external transverse

FIG. 6. Variance of the work distribution for the Ising model
with N=7 spins at hp=1 as a function of the period 7 for 8=0, 8
=1/2, and B=1.
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FIG. 7. (Color online) Time evolution of the average work for
the Ising chain with a triangular periodic transverse field at =1
and maximal amplitude hg=1/2 with periods 7=1 (circles), 7=3
(squares), and 7=5 (triangles). The inset shows the free energy
difference (lower curve) and the average work (top curve) for a
large period 7=50 of the field. In this case the transformation is
nearly adiabatic.

field is lowered, we see that the deviation from the free en-
ergy difference becomes larger and one is no longer able to
recognize the underlying oscillatory external field. The larg-
est variations and most “chaotic” behavior are obtained at the
value 7., previously identified for one period. At higher
frequencies the fluctuations of the average work decrease
again.

b. Exact solution for the driven Ising model. With a sinu-
soidal forcing field h(r) e« sin(wt) it is in fact possible to
solve exactly the dynamics of the Ising quantum chain. In-
deed, following the lines of Ref. [43], we can put the peri-
odic boundary conditions Hamiltonian (3), after a Jordan
Wigner transformation followed by a Bogoliubov one, into a
sum of commuting operators:

N2
H=2H, (15)
p=1
with
flp =[cos ¢, - h(t)][a;ap + aipa_p (16)
1 t
—isin dplayal, +a,a_,]+h(o), (17)

where [ﬁp,ﬁq]=0 and ¢,=2mp/N. The a' and a are Fermi
operators in momentum space. Using the basis
((0y.aja’ 0).al|0),a’ |0)), where |0) is the vacuum of the a
fermions, we have the 4 X 4 representation
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h(7) —isin ¢, 0 0

- isin ¢, 2 cos ¢,—h(t) 0 0

=1 0 cosd, O
0 0 0 cos ¢,

(18)

In the Heisenberg picture, the time-evolution matrix U,(t) in
the subset p is governed by the equation (A=1)

d -
IEU”(I) =U,(NH,(1), (19)

with the boundary condition U,(0)=1. Using (18) and (19), it
is easy to obtain for the nonvanishing elements of the 4 X 4
matrix U,(7) the differential equation

d (Uél(t) U}f(t))

U0 U1
; _
di\U' (1) U (1)

=\ 2 22 )
(U,, 0 U0
><< h(t) —isin ¢, )
isin ¢, 2 cos ¢, - h(t)
(20)
and U;3(t)=Uf,4(t)=e‘” s From the two coupled first-
order differential equations, it is easy to obtain the decoupled
second-order ones. For example, one has for the 11-
component
iu" =2 cos ¢u' —[h' —isin*¢p+ih(2cos p—h)Ju=0,
(21)
with u(0)=1, u'(0)==ih(0), and similar equations for the
other components. Taking for the field the form h(r)=h,
+h, cos(wr) and putting it into the differential equation (21)

one gets solutions in terms of the double-confluent Heun
function Hp; namely, for U [ﬂl(t) and Ull,2 one has

1 )
U1 = 2_}12[(005 by = hy)e™Hp(a, By, 6, iz)

- (COS ¢p - th - hl)e_iAtHD(_ a, B’ Ys 5’ iZ)],

(22)
U (1) = M[eiA’HD(a, B.— v, 8,— iz)
2h,
- e_iAIHD(_ o, Bs_ 77 5, iZ)]s (23)

with z=tan(wt/2), A,=%sin(wt)—t cos ¢, a=y/2=4h,/ w,
B=5[m3~|hy=hy+e'®|*], and  S=—"5[h3—|hy+h +e' ]
and similar expressions for the other components.

The equilibrium initial state is factorized as p(0)

o[ e#9), and its time-evolution is given by the tensor
product

p(t) = pi(H)pa(1) - -+ pyp(t), (24)

with
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p0)= U, (Dp,(0)U(0). (25)

The average work performed on the system during time ¢
with the periodic forcing is given by the integral of the mag-
netization:

W) = f ds ' () Tr{p(s)M3), (26)
0

where MZ—EN/ZIMZ, with Mz—a a +ana , is the total
magnetization operator in the z dlrectlon Usmg the factor-
ized form of p(r) and the additive structure of M?, it is easy
to compute (M?)(¢) as a sum of N/2 independent modes. One

obtains

N/2 (@E)
(M) = 2 (0~ cos 4,12 [P~ 1
P
2 sin ¢, In(U2UL)}, (27)

with A,=sin* ¢p,+[1(0)—cos ¢,]*. Together with the solu-
tions of the U, components in terms of Heun functions, this
formally solves the problem for the average work. One may
notice that the factor of tanh( A0 ) in this expression leads to
the previously observed tanh(8/2) in (13) since in that case
h(0)=0 and then A,(0)=1 V p, and one has for the average
magnetization

(M¥(t) =— tanh(g) [1 + 22 cos ¢p|U;1|2
p
+sin ¢, Im(U,lsz[l,l*)] , (28)

and consequently the average work can be written as in (13):
(W)g=tanh(B/2)(6W). The independence of the N/2 modes
also explains the linear behavior of the variance observed in
the previous section since (Wz)ﬁ—(W)%:EgQ(W(z])B—(Wq)%
~ N, where W, is the work associated with the ¢gth mode.
Finally, taking h;=—h,=hy/2, such that h(1)=h sin’(%), we
have an exact solution for a situation which closely re-
sembles the triangular drift treated above numerically. We
show the behavior of the average work in Fig. 8 for different
periods 7=27/ w. As previously observed, the average work
fluctuations are maximum around 7=3.

2. XX chain in a longitudinal magnetic field

Finally we present the results obtained in the forced re-
gime for the XX chain. In Fig. 9 we show the stationary work
probability distributions for short and long periods 7 on a
chain of N=8 spins obtained from an initial infinite tempera-
ture state after applying the field over typically several tens
of periods (after about 30 periods the work distributions are
collapsing nicely on the same curve). We see clearly the
appearance of two different regimes depending on the time
scale 7. For very short periods 7<<1, the shape of the distri-
bution is very well approximated by an exponential law
e/ (2q) while for long enough time scale 7 its shape is
close to a normal law. One may notice in Fig. 9 the very
good collapse of the distributions for different values of the
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FIG. 8. (Color online) Time evolution of the average work for
the Ising chain with a sine square periodic transverse field at =1
and maximal amplitude hy=1/2 with periods 7=1 (circles), 7=3
(squares), and 7=4 (triangles). The inset shows the free energy
difference (lower curve) and the average work (top curve) for a
large period 7=50 of the field. In this case the transformation is
nearly adiabatic.

period 7 in both short- and long-period regimes. We have
also seen that this transition survives at finite temperature,
the main difference between the infinite- and finite-
temperature cases being that in the latter case the work dis-
tribution is no longer symmetric, but squeezed toward posi-
tive work values as seen in Fig. 10.

To give evidence of this transition, we plot in Fig. 11 the
variance (W?)—(W)? (the average work is vanishing for 8
=0) of the distribution P(W) as a function of the time scale 7.
For a system of size N=8, we observe a sharp increase of the
variance from values around 0.25 at time scales smaller than
for 7.=1 to values around 2.5 at larger periods 7 where the
shape is Gaussian-like. Note that the threshold value 7, is
dependent on the system size, decreasing as the size is in-
creased. In Fig. 12 we show the field amplitude dependence
of the variance (W?), of the work distribution for short and

0

10 v
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107} * =
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10-4 L .
=
= 0t :
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1 l 1 l 1 l 1
20 210 0 10 20
w

FIG. 9. (Color online) Work probability distribution for the XX
quantum chain with N=8 spins at 8=0 for hy=1/2.
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FIG. 10. (Color online) Work probability distribution for the XX
quantum chain with N=8 spins at S=1/2 for hy=1/2.

long periods of the external drift. One may notice that at long
periods, the increase of the variance with the field amplitude
is almost linear, while it is more curved at short periods. In
Fig. 13 we see that as the size is increased, the variance at
large time scales strongly grows with N, while there is al-
most no dependence on size at high frequencies. It means
that when the period of the external field is too short, the
system has no time to follow the perturbation and only tran-
sitions between nearby levels are significantly induced. For
the density of work w=W/N this leads to a &(w) distribution
in the limit 7 — 0, since, as seen in Fig. 12, a=\(W?)/2 is a
vanishing function of the amplitude of the field &, presum-
ably linear. On the contrary, and as the system size is in-
creased, at long enough periods, meaning that the external
field drives the system efficiently from its initial level to a
new state, transitions between levels far apart become sig-
nificant. Taking the fact that the variance seems to be const
X hN? from Figs. 12 and 13, the distribution 7r(w) in that
case behaves as ¢=comUW

Finally, we have analyzed the temperature dependence of
the work distribution P(W) in the large-7 regime. As seen in

FIG. 11. (Color online) Variance of the work distribution for the
XX quantum chain with N=8 spins at 8=0 and B=1 for hy=1/2 as
a function of the field period 7.
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FIG. 12. Second moment of the work distribution for the XX
quantum chain with N=8 spins at 8=0 as a function of the field
maximal amplitude #,.

Fig. 14, the average work after a first increase with 8 seems
to finally saturate at a value close to 0.44. We have checked
that this shape is compatible with a tanh(w3) behavior. Con-
trary to the almost temperature-independent variance of the
Ising-case distributions, we see here that the variance of the
distribution is decreasing (increasing) with B (temperature),
which is what one would normally expect.

III. SUMMARY AND DISCUSSION

In this study we have presented the numerical and analyti-
cal results we obtained for the work distribution of small
quantum systems driven by an external field. We have con-
sidered two different models: namely, the integrable Ising
quantum chain in a time-dependent transverse field and the
XX quantum chain in a time-dependent longitudinal mag-
netic field. In this latter model, the presence of the longitu-
dinal field breaks the free fermionic structure of the chain,
while the transverse field in the Ising case preserves the free

10

FIG. 13. Second moment of the work distribution for the XX
quantum chain with hy=1/2, at 8=0 as a function of the system
size N for 7=0.1 (squares) and 7=10 (circles).
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FIG. 14. First (circles), second (squares) and variance (triangles)
of the work distribution for the XX quantum chain with N=8 spins
at 7=10 at hy=1/2 as a function of the inverse temperature f.

particle structure, which obviously leads to integrability. In a
first stage, we have checked the validity of both quantum
Jarzynski and quantum Crooks relations, which were largely
discussed in Sec. II. After this initial check, validating our
numerical approach, we focused our attention on the periodic
driven situation. In the Ising chain, exploiting its free fermi-
onic structure, we solved exactly the unitary dynamics of the
system in terms of somewhat complicated double-confluent
Heun functions. The main features observed are, as expected,
that for a slow enough process—that is, a large period of the
oscillations of the field compared to the coupling
constant—we recover the adiabatic situation where the work
slightly differs, from above, from the equilibrium free energy
difference. This is a statement of the second principle. As the
process is speeded up, the average work starts to deviate
significantly from the free energy difference with fluctuations
in time, which are growing as the frequency of the field is
increased. Nevertheless, at very high frequencies, the work
fluctuations decrease again to zero. In this case, the variation
of the field is so fast that the system is not able to follow it
anymore. The maximum amplitude of the work fluctuations

PHYSICAL REVIEW E 77, 051120 (2008)

is obtained at an intermediate period which is of the order of
the inverse field amplitude, at least for large fields enough.
This threshold is understood as a dynamical resonance. In
the Ising chain, one is not able to observe a steady work
distribution. The behavior of the XX chain in a longitudinal
periodic field is quite different. We observe numerically that
the long-time work distribution reaches a steady shape which
is strongly dependent on the frequency of the field. Indeed, at
high frequencies the distribution is well fitted by an expo-
nential curve ¢~ "/%/(2a), where a~h is almost size inde-
pendent. Lowering the frequency, there is a sharp transition
toward a Gaussian like behavior for the work distribution
with a variance which seems from the numerics to be pro-
portional to AN?. In order to understand the transition be-
tween these two limit distributions, one has to realize that the
energy band of the chain has a width 8 of order N (since the
typical coupling J is set to 1). The periodic perturbation in-
troduces a typical energy scale w=2mw/7. For w> &, there
is no resonant coupling of the system with the periodic forc-
ing. But as soon as w< &g, resonant coupling leads to the
appearance of resonant peaks—that is, sharp increases of the
transition probability in the regions W= * w and integer mul-
tiples of w. The typical width of those peaks is of the order
of the amplitude % of the perturbation. Consequently, the
deviation to the initial exponential distribution starts at peri-
ods 7> O(2m/N). As the period is increased further, the first
peaks moves toward the center of the distribution and new
resonant peaks enter into play from the boundaries. Finally,
the superposition of these resonant peaks for 7>O(1/h)
leads to a new limit distribution of the work. So the transi-
tion region between the two limit distributions is O(27/N)
<7<O(1/h). Finally, one may remark that the change of
shape from exponential-like to Gaussian-like could be linked
to the integrability of the model. Indeed, at very short peri-
ods, the system is not able to follow the external perturbation
and its behavior is governed by the initial integrable Hamil-
tonian (XX chain without field), while at larger periods the
system feels effectively its nonintegrability, possibly leading
to a Gaussian distribution of level spacing (which is our
work). To confirm eventually this scenario one needs to push
further this investigation.
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